Reg. No.				

G. VENKATASWAMY NAIDU COLLEGE (AUTONOMOUS), KOVILPATTI - 628 502.

UG DEGREE END SEMESTER EXAMINATIONS - NOVEMBER 2025.

(For those admitted in June 2023 and later)

PROGRAMME AND BRANCH: B.C.A.

SEM	CATEGORY	COMPONENT	COURSE CODE	COURSE TITLE
v	PART - III	CORE - 9	U23CA505	OPERATING SYSTEM

Date & Session: 04.11.2025/FN Time: 3 hours Maximum: 75 Marks

	Pate & Session. 04.11.2020/FN Time . 0 Hours Maximum. 70 Marks					
Course	Bloom's K-level	Q. No.	<u>SECTION - A (10 X 1 = 10 Marks)</u> Answer <u>ALL</u> Questions.			
CO1	K1	1.	Which system runs multiple programs sim a) Batch b) Paral c) Serial d) Stack	lel		
CO1	K2	2.	What is a program called when it is execut: a) File b) Proce c) Compiler d) Job	-		
CO2	K1	3.	Which semaphore uses only 0 or 1 values? a) Counting b) Binar c) Stack d) Monite	y		
CO2	K2	4.	What condition does a critical section enformal a) Time slicing b) Single c) Multitasking d) Process	access		
CO3	K1	5.	Which strategy is used for deadlock avoida a) Recovery b) Schee c) Prevention d) Safe s	duling		
CO3	K2	6.	What is the role of Resource Allocation Gra a) Code logic b) Dead c) Context switch d) Times	lock detect		
CO4	K1	7.	Which one is a non-pre-emptive scheduling a) RR b) FCFS c) HRN d) MLFC	-		
CO4	K2	8.	What type of scheduling reduces average was a) RR b) FIFO c) SJF d) HRN	vaiting time?		
CO5	K1	9.	Which strategy moves memory contents to a) Caching b) Mapp c) Swapping d) Pagir	ping		
CO5	K2	10.	What is the role of memory hierarchy? a) Store I/O b) Spee c) Manage CPU d) Swap	d access o files		

Course	Bloom's K-level	Q. No.	$\frac{\text{SECTION} - B \text{ (5 X 5 = 25 Marks)}}{\text{Answer } \frac{\text{ALL}}{\text{Questions choosing either (a) or (b)}}$
CO1	КЗ	11a.	Illustrate the structure of a Process Control Block (PCB). (OR)
CO1	КЗ	11b.	Sketch the process states and transitions with a neat diagram.
CO2	КЗ	12a.	Apply Lamport's Bakery algorithm to achieve thread mutual exclusion. (OR)
CO2	КЗ	12b.	Illustrate the concept of a Monitor with an example.
CO3	K4	13a.	Analyse the necessary conditions for deadlock to occur and its solutions. (OR)
CO3	K4	13b.	Differentiate between deadlock prevention and deadlock recovery.
CO4	K4	14a.	Compare and contrast Pre-emptive and Non-Pre-emptive CPU scheduling. (OR)
CO4	K4	14b.	Analyse the working of Shortest-Process-First (SPF) scheduling Algorithm.
CO5	K5	15a.	Assess Contiguous Memory Allocation in a single-user system. (OR)
CO5	K5	15b.	Evaluate the working of Demand Paging in virtual memory systems.

Course	Bloom's K-level	Q. No.	SECTION - C (5 X 8 = 40 Marks) Answer ALL Questions choosing either (a) or (b)
CO1	КЗ	16a.	Illustrate how interrupts are handled in operating systems. (OR)
CO1	КЗ	16b.	Illustrate the Inter Process Communication (IPC) mechanism.
CO2	K4	17a.	Analyse various software solutions to the mutual exclusion problem. (OR)
CO2	K4	17b.	Analyse the Semaphore Mechanism used in Process Synchronization.
CO3	K4	18a.	Examine Dijkstra's Banker's algorithm for deadlock avoidance. (OR)
CO3	K4	18b.	Analyse the Deadlock Detection technique using a Resource Allocation Graph.
CO4	K5	19a.	Evaluate Round-Robin CPU scheduling Algorithm. (OR)
CO4	K5	19b.	Assess the functionality of Multilevel Feedback Queue Scheduling Algorithm.
CO5	K5	20a.	Assess the segmentation process. (OR)
CO5	K5	20b.	Assess any three Page-Replacement Strategies.